翻訳と辞書 |
harmonic coordinate condition : ウィキペディア英語版 | harmonic coordinate condition The harmonic coordinate condition is one of several coordinate conditions in general relativity, which make it possible to solve the Einstein field equations. A coordinate system is said to satisfy the harmonic coordinate condition if each of the coordinate functions ''x''α (regarded as scalar fields) satisfies d'Alembert's equation. The parallel notion of a harmonic coordinate system in Riemannian geometry is a coordinate system whose coordinate functions satisfy Laplace's equation. Since d'Alembert's equation is the generalization of Laplace's equation to space-time, its solutions are also called "harmonic". ==Motivation== The laws of physics can be expressed in a generally invariant form. In other words, the real world does not care about our coordinate systems. However, for us to be able to solve the equations, we must fix upon a particular coordinate system. A coordinate condition selects one (or a smaller set of) such coordinate system(s). The Cartesian coordinates used in special relativity satisfy d'Alembert's equation, so a harmonic coordinate system is the closest approximation available in general relativity to an inertial frame of reference in special relativity.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「harmonic coordinate condition」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|